If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=-8Y^2+20Y-9
We move all terms to the left:
-(-8Y^2+20Y-9)=0
We get rid of parentheses
8Y^2-20Y+9=0
a = 8; b = -20; c = +9;
Δ = b2-4ac
Δ = -202-4·8·9
Δ = 112
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{112}=\sqrt{16*7}=\sqrt{16}*\sqrt{7}=4\sqrt{7}$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-4\sqrt{7}}{2*8}=\frac{20-4\sqrt{7}}{16} $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+4\sqrt{7}}{2*8}=\frac{20+4\sqrt{7}}{16} $
| 15–p=1/3p–1 | | X/2+x=14-2x | | Z=-1/3z-(-7) | | 5y(2y-3)=0 | | -2=2+2u | | 10=3/5y | | 5/8=2/x-5 | | 4(0)-2y=2 | | 2=x-7/8x | | 9/6=n/2 | | 9(w+7)=3w+15 | | -8v+44=-5(v-7) | | -8(w-7)=2w-44 | | 91=12x+10(4x) | | n/(n-20=5/(n+2)-(n-1)/(2-n) | | 350−x=200+x | | 0=-6x2-19x-15 | | 1/3x-3/10x-9=0 | | 6x2=-19x-15 | | (n+2)(2-n)n=(n-2)(2-n)5-(n-2)(n+2)(n-1) | | -32-24n=-2 | | 30+8t+100=70+10t | | 41w2–13w=0 | | 3n2+2n=0 | | x2+17x=0 | | t2+9t=0 | | v2+40v=0 | | s2+6s=0 | | 8x+9=5x-3 | | 20+72t=80+18t | | 15(y-4)-2(y+9)+5(y+6)=0 | | 15(y-4)-2(y+9)+(y+6)=0 |